NO. 5 BRIDGE: Champ Clark Bridge over the Mississippi River (U.S. Hwy 54)

New span across the Mississippi River benefits two states

(This feature published as "Here's to You, Champ" in November 2019 issue)

Brian W. Budzynski / November 05, 2019
NO. 5 BRIDGE: Champ Clark Bridge over the Mississippi River (U.S. Hwy 54)
The new bridge was opened Aug. 3 to much public fanfare. The great grandchildren of Champ Clark himself were on hand for the opening, along with 600 other people. The demo of the old structure was underway as of this writing, with deck removal complete.
Originally completed in 1928, the Champ Clark Bridge—so named for a former Missouri Speaker of the House—stood as a landmark along the Mississippi River for nearly a century.

But like all man-made creations, its serviceable life eventually and inevitably came to an end—and a new alternative was required. The bridge linked Louisiana, Missouri, an area of rolling hills that feature quite a lot of agricultural development, with Pittsfield, Illinois, where the soils are classically rich river bottom soils, ideal for farming. Its replacement structure now carries the same burden of community connection. What was once just 20 ft wide, with extremely narrow 10-ft shoulderless travel lanes now boasts a pair of 12-ft driving lanes and 10-ft shoulders in each direction, more than doubling the traversable width. For a rural area that has farming equipment as a regular part of the overall traffic mix, this improvement has been long overdue.

We first covered this bridge replacement project in our May 2019 issue. At that time, contributing author Lisa Schoolcraft quoted Missouri DOT Project Director Keith A. Killen as saying, “‘When combines go across, the police shut down the bridge. This also happens frequently with large loads. The new bridge will be an amazing improvement for the community.’” 

Right he was. Roads & Bridges had the chance to speak with Killen recently about this project, and now that the bridge is open to traffic, he touted the safety improvements the new structure offers. 

“There weren’t necessarily backups on the old bridge,” he said. “Traffic is light enough at about 4,200 vehicles per day that it was usually just a matter of things slowing down. The old bridge had a posted speed limit of 30 mph, and people would often drive slower than that over it. But there were some crashes, though it didn’t rise to a level of being worse than other river crossings. What there were a lot of were side swipes and mirrors getting clipped off due to the narrow lanes. With the wider lanes and shoulders, we expect to see that greatly reduced.”

Due to the length of the cross-river spans, designers opted for steel girders over precast concrete, though precast did come into play elsewhere in the project. “It made more sense to use steel on the river spans,” Terrence J. Colombatto, project manager for contractor Massman Construction Company, told Roads & Bridges. “The spans range from 260 ft to 420 ft in this area, and had we chosen concrete on those spans, we would have had to shorten the spans or go with a post-tensioned spliced concrete girder. We also would not have been able, likely, to reduce the piers in the river. But we did use precast on the approach spans. There are three approach spans we used concrete girders on.”

precast deck panels for the bridge
A cost and time saver was using precast deck panels for the bridge. A total of 181 precast deck panels were used in the construction of the new bridge. Each deck panel was 46 ft wide, extending to the full width of the bridge.

With any river construction there is always the risk of flooding, and crews did experience the second highest recorded river flow in the Mississippi’s history this past summer. It was something Massman had to perpetually contend with; however, the reduction in the number of in-river piers did make the river work somewhat less difficult than it might otherwise have been.

“We were able to eliminate one of the piers,” Colombatto said. “The old bridge had five in the river, we have four, which was nice as it reduced the impact of displaced water and flow, and helped us achieve the no-rise criteria that was set by the U.S. Army Corps of Engineers.”

Massman used large, 11-ft-diam. drilled shafts in the piers, which enabled a reduction in the number of shafts per pier and aided the project from a cost-savings perspective. It was one of several means Massman employed to optimize and improve the project timeline.

“We asked ourselves how can we enhance this project?” Colombatto told Schoolcraft. “What bells and whistles can we give them? We included some little things that would enhance the project, like adding roadway lighting to the intersection at the west end of the project. We proposed to give them a polyester polymer overlay on the deck of the bridge. That was a big selling point. And we added 10-ft shoulders to each side of the bridge. We carried the shoulders not only on the bridge but over on the Illinois roadway as well.”

Another cost and time saver was using precast deck panels. Designer HNTB Corp. had used precast deck panels before on other projects; the benefit to the Champ Clark Bridge project was to keep it on schedule. A total of 181 precast deck panels were used in the construction of the new bridge. Each deck panel was 46 ft wide, extending to the full width of the bridge.

Since our initial coverage, crews have completed the deck portion of the superstructure, the concrete barriers, all paving on the approaches, guardrail installation, and striping. The new bridge was opened Aug. 3 to much public fanfare. “The great grandchildren of Champ Clark himself were on hand for it,” Killen said, “along with 600 other people.”

The demo of the old structure was underway as of this writing, with deck removal complete. By the time you read this, the old trusses will be a thing of the past.

Champ Clark Bridge
The Champ Clark Bridge—which was once just 20 ft wide, with extremely narrow 10-ft shoulderless travel lanes—now boasts a pair of 12-ft driving lanes and 10-ft shoulders in each direction, more than doubling the traversable width.
Project: Champ Clark Bridge over the Mississippi River (U.S. Hwy 54)
Location: Louisiana, Missouri
Owners: Illinois DOT & Missouri DOT
Designer: HNTB
Contractors: Massman Construction Company
Cost: $60 million
Length: 2,281 ft
Completion Date: August 3, 2019

About the Author

Budzynski is senior managing editor of Roads & Bridges.

Related Articles

NO. 1 BRIDGE: Bayonne Bridge
The Bayonne Bridge project provided nearly 1,500 jobs annually throughout construction, an estimated $380 million in wages and $1.6 billion in economic impact for the region.
Everybody loves a big-ticket bridge build. Even folks who have no real appreciation for structural engineering or the complex geometry at play in the…
November 05, 2019
NO. 2 BRIDGE: Marc Basnight Bridge (Herbert C. Bonner Bridge replacement)
One challenging aspect of the project was working in a sensitive marine environment. The project footprint is home to 20 protected species; the north end of the bridge lands in the Cape Hatteras National Seashore, while the south end lands in the Pea Island National Wildlife Refuge. Several innovative solutions were employed to ensure environmental impacts were minimized.
From the time the Herbert C. Bonner Bridge was built in 1963 over the Oregon Inlet along the North Carolina coast, the structure was in trouble.…
November 05, 2019
NO. 3 BRIDGE: 41st Street Pedestrian Bridge
The city of Chicago has seen a boom of dynamic architectural development in the last 15 years, and the new 41st Street Bridge, which was designed by architects at Cordogan, Clark & Associates, serves as yet another jewel in the Windy City crown.
Through an international design competition called “Bridging the Drive,” the City of Chicago constructed a new signature pedestrian bridge at 41st…
November 05, 2019
NO. 4 BRIDGE: Lesner Bridge
The city had decided early on that they wanted a segmental bridge in order to have longer spans, more curves on the structure, and an aesthetic quality that would fit the bridge into the landscape. One of the factors that was considered in the design phase of the project was to create more space between the pier columns in order to provide unobstructed views of the Chesapeake Bay and Lynnhaven River.
Anyone traversing the area of the Lynnhaven Inlet along Virginia’s southern coast at nighttime would be remiss if they failed to notice the dazzling…
November 05, 2019
expand_less