Pedestrian bridge elevates safety at busiest urban greenway in nation

Redi-Rock Positive Connection (PC) System
Redi-Rock Positive Connection (PC) System

Keeping residents safe was a top priority when Hamilton County, Ind., made plans to expand the local Monon Greenway rail trail. The city of Indianapolis calls the Monon Greenway one of the busiest urban greenways in the nation, and providing this bridge crossing over 146th Street was key to the success of the trail’s northward expansion.

To make the pedestrian bridge a reality, retaining walls were required to raise grade for the bridge to span over 146th Street.

Searching for a solution that could meet the site’s requirements, designers turned to reinforced retaining walls.

“This is an old, abandoned railroad corridor, and the county highway engineer wanted to make this new bridge resemble an old railroad bridge,” explained Hamilton County’s Bridge Program Engineer Matt Knight. “A lot of the old railroad bridges in this area have abutments made of big, cut limestone and we wanted to select something that would resemble that.”

To create the reinforced retaining walls required for the project, designers chose the Redi-Rock Positive Connection (PC) System from local manufacturer Redi-Rock of Kentuckiana. The limestone texture of the blocks has the look of natural stone, but are engineered to work with modern bridge design. With the PC System, there’s virtually no chance of a connection failure because the grid wraps through the block. The resulting connection does not have a weight dependent (friction) component, so it provides as much strength at the top of the wall as at the bottom. In addition, unlike many other wall systems, there are no extra parts and pieces or mechanical fasteners required for the connection—simplifying the construction sequence and eliminating common installation errors.

Because this project needed to fit in a tight footprint and had many corners, having a retaining wall that was versatile was key. Multiple setback options are available with the retaining wall system, including a vertical batter which was used on this project for several reasons:

  • The vertical batter helped minimize the space required for the retaining walls. “It was a very challenging place to work in. We were spanning a busy street, so we had the challenge of working in a very tight space and trying to do it in as short of a space as possible and trying to do it with as little disturbance as possible,” Knight said.

The design of the bridge structure needed to be completed in a very tight footprint to maintain the required trail widths and right-of-way. “As far as the design is concerned, the load from the bridge was on piers and the wall needed to fit around the piers within the dimensions the city allowed,” explained wall designer Curtis Derichs, P.E., and vice president of Civil Design Professionals;

  • The vertical wall face was able to meet the AASHTO LRFD design standards, which was important for this project because federal and state DOT funds were involved. The PC System provides superior connection strength, which allowed Redi-Rock to easily meet this design standard; and
  • The vertical batter helped the walls coordinate with the bridge piers. “With so many inside and outside corners it becomes more and more difficult for everything to fit as the wall gets taller. As a result the walls were designed with near vertical batter to help ease of construction,” Derichs said.

The flexibility of the retaining wall system also meant that field fabrication was cut to a minimum. “A big challenge was that the pedestrian bridge sits on piers the wall needed to fit around with specific dimensions. With any block system that has set dimensions, this can be difficult without cutting blocks. We used slight radiuses and half blocks to achieve dimensions that were really close and acceptable to the city’s requirements,” Derichs explained.

In total, the project required 11,000 sq ft of Redi-Rock PC System retaining walls leading up to and away from the bridge. The bridge structure itself spans 428 ft with a 12-ft-wide path to provide safe crossing for users. The main span consists of a single, 108-ft span utilizing a steel bowstring arch truss. The four approach spans are made up of steel pratt trusses 80 ft in length.

Visit to get a quote today!

Related Articles

The state of Georgia has had its fair share of major highway projects over the last few years, and it is not about to slow down any time soon. Back…
August 01, 2019
Heavily skewed bridges can be a real pain to design and build. Once a bridge’s skew angle creeps over 45°, the challenges of analyzing, designing,…
August 01, 2019
When Patricia Roebling began working as the then-assistant city engineer in Port St. Lucie, Florida, in 1995, a third crossing over the north fork of…
August 01, 2019
I-90 project enclosed pedestrian overpass bridge
A significant feature of the I-90 project is a $6 million enclosed pedestrian overpass bridge and accompanying entry buildings integrated within the interchange. This steel truss bridge with glass curtain walls spans the tollway and connects express bus stations on both sides of I-90, improving mobility and safety for pedestrians and transit users.
Multimodal connectivity is becoming an increasingly popular concept in addressing congestion and quality-of-life issues. While there are abundant…
August 01, 2019