Prithvi S. (Ken) Kandhal, P.E. / December 28, 2000

Moisture susceptibility of HMA mixtures

The term "stripping" is applied to hot-mix asphalt (HMA) mixtures that exhibit separation of asphalt binder film from aggregate surfaces due primarily to the action of moisture and/or moisture vapor. During the last 10 years, I have investigated four cases of premature (less than two years after construction) failure of HMA overlays resulting from stripping. The following conclusions were drawn and recommendations made from those four case histories:

First, as has been said by many pavement engineers, three things are important for pavements: drainage, drainage and drainage. Stripping of asphalt courses will not occur in absence of moisture and moisture vapor.

Next, if subsurface drainage of the pavement is inadequate, moisture and/or moisture vapor can move upwards due to capillary action and/or the "greenhouse" effect and saturate the asphalt courses. Stripping can then occur due to cyclic pore water pressure generated by heavy traffic, which will physically scour the asphalt binder off the aggregate surface.

Also, if an open-graded friction course (OGFC) is used as a wearing course, the underlying asphalt surface course has a potential to strip.

The following recommendations are made to minimize stripping in the underlying asphalt course:

  • Do not use a surface course mix with more than 12.5 mm maximum nominal size;
  • If possible, delay the placement of OGFC for two summers so that the surface of the underlying mix gets kneaded by traffic and becomes practically impermeable to water from the OGFC;
  • If the placement of OGFC cannot be delayed, apply a uniform emulsion fog seal to completely fill the surface voids just prior to the placement of OGFC; and
  • Use an effective anti-stripping agent in the underlying surface course mix.

There is a need to develop a reliable and realistic laboratory test method to predict moisture susceptibility of HMA mixtures. It was observed in the four case histories that the asphalt pavements were near 100% saturated with water (not 55-80% saturated as specified in ASTM D4867 or AASHTO T283) and the cyclic pore pressure generated by the traffic mechanically scoured the asphalt binder off the aggregate surface. A laboratory test procedure that simulates such conditions will be more realistic.

About the Author

Kandhal is the Associate Director at the National Center for Asphalt Technology at Auburn University. You may write him in care of the editor.

Related Articles

Hay County, Texas relies on the Roadpatcher from Schwarze for roadway surface repair.
Municipalities often find pothole repair to be both aggravating and expensive. One cause for these woes is the traditional repair technique known as…
August 23, 2019
Figure 1. Crack Sealing Application
Figure 1. Crack sealing application
Surface cracking in asphalt concrete is a major failure mechanism that develops over the pavement service life. In general, surface cracks are…
August 12, 2019
Maryland Route 404 (MD 404) is a major highway on Maryland’s Eastern Shore. Anyone who has driven along the Chesapeake Bay Bridge and toward the…
August 05, 2019
The state of Georgia has had its fair share of major highway projects over the last few years, and it is not about to slow down any time soon. Back…
August 01, 2019